/* *Copyright(c++)2014 烟台大学计算机学院 *All rights reserved. *文件名称:cpp.1 *作者:李宁 *完成日期:2015.11.30 *版本号:v1.0 *问题描述:验证折半查找;验证分块查找;二叉排序相关算法;平衡二叉树相关算法; */ #include <stdio.h> #define MAXL 100 typedef int KeyType; typedef char InfoType[10]; typedef struct { KeyType key; //KeyType为关键字的数据类型 InfoType data; //其他数据 } NodeType; typedef NodeType SeqList[MAXL]; //顺序表类型 int BinSearch(SeqList R,int n,KeyType k) { int low=0,high=n-1,mid; while (low<=high) { mid=(low+high)/2; if (R[mid].key==k) //查找成功返回 return mid+1; if (R[mid].key>k) //继续在R[low..mid-1]中查找 high=mid-1; else low=mid+1; //继续在R[mid+1..high]中查找 } return 0; } int main() { int i,n=10; int result; SeqList R; KeyType a[]= {1,3,9,12,32,41,45,62,75,77},x=75; for (i=0; i<n; i++) R[i].key=a[i]; result = BinSearch(R,n,x); if(result>0) printf("序列中第 %d 个是 %d\n",result, x); else printf("木有找到!\n"); return 0; }
#include <stdio.h> #define MAXL 100 //数据表的最大长度 #define MAXI 20 //索引表的最大长度 typedef int KeyType; typedef char InfoType[10]; typedef struct { KeyType key; //KeyType为关键字的数据类型 InfoType data; //其他数据 } NodeType; typedef NodeType SeqList[MAXL]; //顺序表类型 typedef struct { KeyType key; //KeyType为关键字的类型 int link; //指向对应块的起始下标 } IdxType; typedef IdxType IDX[MAXI]; //索引表类型 int IdxSearch(IDX I,int m,SeqList R,int n,KeyType k) { int low=0,high=m-1,mid,i; int b=n/m; //b为每块的记录个数 while (low<=high) //在索引表中进行二分查找,找到的位置存放在low中 { mid=(low+high)/2; if (I[mid].key>=k) high=mid-1; else low=mid+1; } //应在索引表的high+1块中,再在线性表中进行顺序查找 i=I[high+1].link; while (i<=I[high+1].link+b-1 && R[i].key!=k) i++; if (i<=I[high+1].link+b-1) return i+1; else return 0; } int main() { int i,n=25,m=5,j; SeqList R; IDX I= {{14,0},{34,5},{66,10},{85,15},{100,20}}; KeyType a[]= {8,14,6,9,10,22,34,18,19,31,40,38,54,66,46,71,78,68,80,85,100,94,88,96,87}; KeyType x=85; for (i=0; i<n; i++) R[i].key=a[i]; j=IdxSearch(I,m,R,n,x); if (j!=0) printf("%d是第%d个数据\n",x,j); else printf("未找到%d\n",x); return 0; }
#include <stdio.h> #include <malloc.h> typedef int KeyType; typedef char InfoType[10]; typedef struct node //记录类型 { KeyType key; //关键字项 InfoType data; //其他数据域 struct node *lchild,*rchild; //左右孩子指针 } BSTNode; //在p所指向的二叉排序树中,插入值为k的节点 int InsertBST(BSTNode *&p,KeyType k) { if (p==NULL) //原树为空, 新插入的记录为根结点 { p=(BSTNode *)malloc(sizeof(BSTNode)); p->key=k; p->lchild=p->rchild=NULL; return 1; } else if (k==p->key) //树中存在相同关键字的结点,返回0 return 0; else if (k<p->key) return InsertBST(p->lchild,k); //插入到*p的左子树中 else return InsertBST(p->rchild,k); //插入到*p的右子树中 } //由有n个元素的数组A,创建一个二叉排序树 BSTNode *CreateBST(KeyType A[],int n) //返回BST树根结点指针 { BSTNode *bt=NULL; //初始时bt为空树 int i=0; while (i<n) { InsertBST(bt,A[i]); //将关键字A[i]插入二叉排序树T中 i++; } return bt; //返回建立的二叉排序树的根指针 } //输出一棵排序二叉树 void DispBST(BSTNode *bt) { if (bt!=NULL) { printf("%d",bt->key); if (bt->lchild!=NULL || bt->rchild!=NULL) { printf("("); //有孩子结点时才输出( DispBST(bt->lchild); //递归处理左子树 if (bt->rchild!=NULL) printf(","); //有右孩子结点时才输出, DispBST(bt->rchild); //递归处理右子树 printf(")"); //有孩子结点时才输出) } } } //在bt指向的节点为根的排序二叉树中,查找值为k的节点。找不到返回NULL BSTNode *SearchBST(BSTNode *bt,KeyType k) { if (bt==NULL || bt->key==k) //递归终结条件 return bt; if (k<bt->key) return SearchBST(bt->lchild,k); //在左子树中递归查找 else return SearchBST(bt->rchild,k); //在右子树中递归查找 } //二叉排序树中查找的非递归算法 BSTNode *SearchBST1(BSTNode *bt,KeyType k) { while (bt!=NULL) { if (k==bt->key) return bt; else if (k<bt->key) bt=bt->lchild; else bt=bt->rchild; } return NULL; } void Delete1(BSTNode *p,BSTNode *&r) //当被删*p结点有左右子树时的删除过程 { BSTNode *q; if (r->rchild!=NULL) Delete1(p,r->rchild); //递归找最右下结点 else //找到了最右下结点*r { p->key=r->key; //将*r的关键字值赋给*p q=r; r=r->lchild; //直接将其左子树的根结点放在被删结点的位置上 free(q); //释放原*r的空间 } } void Delete(BSTNode *&p) //从二叉排序树中删除*p结点 { BSTNode *q; if (p->rchild==NULL) //*p结点没有右子树的情况 { q=p; p=p->lchild; //直接将其右子树的根结点放在被删结点的位置上 free(q); } else if (p->lchild==NULL) //*p结点没有左子树的情况 { q=p; p=p->rchild; //将*p结点的右子树作为双亲结点的相应子树 free(q); } else Delete1(p,p->lchild); //*p结点既没有左子树又没有右子树的情况 } int DeleteBST(BSTNode *&bt, KeyType k) //在bt中删除关键字为k的结点 { if (bt==NULL) return 0; //空树删除失败 else { if (k<bt->key) return DeleteBST(bt->lchild,k); //递归在左子树中删除为k的结点 else if (k>bt->key) return DeleteBST(bt->rchild,k); //递归在右子树中删除为k的结点 else { Delete(bt); //调用Delete(bt)函数删除*bt结点 return 1; } } } int main() { BSTNode *bt; int n=12,x=46; KeyType a[]= {25,18,46,2,53,39,32,4,74,67,60,11}; bt=CreateBST(a,n); printf("BST:"); DispBST(bt); printf("\n"); printf("删除%d结点\n",x); if (SearchBST(bt,x)!=NULL) { DeleteBST(bt,x); printf("BST:"); DispBST(bt); printf("\n"); } return 0; }
#include <stdio.h> #include <malloc.h> typedef int KeyType; //定义关键字类型 typedef char InfoType; typedef struct node //记录类型 { KeyType key; //关键字项 int bf; //平衡因子 InfoType data; //其他数据域 struct node *lchild,*rchild; //左右孩子指针 } BSTNode; void LeftProcess(BSTNode *&p,int &taller) //对以指针p所指结点为根的二叉树作左平衡旋转处理,本算法结束时,指针p指向新的根结点 { BSTNode *p1,*p2; if (p->bf==0) //原本左、右子树等高,现因左子树增高而使树增高 { p->bf=1; taller=1; } else if (p->bf==-1) //原本右子树比左子树高,现左、右子树等高 { p->bf=0; taller=0; } else //原本左子树比右子树高,需作左子树的平衡处理 { p1=p->lchild; //p指向*p的左子树根结点 if (p1->bf==1) //新结点插入在*b的左孩子的左子树上,要作LL调整 { p->lchild=p1->rchild; p1->rchild=p; p->bf=p1->bf=0; p=p1; } else if (p1->bf==-1) //新结点插入在*b的左孩子的右子树上,要作LR调整 { p2=p1->rchild; p1->rchild=p2->lchild; p2->lchild=p1; p->lchild=p2->rchild; p2->rchild=p; if (p2->bf==0) //新结点插在*p2处作为叶子结点的情况 p->bf=p1->bf=0; else if (p2->bf==1) //新结点插在*p2的左子树上的情况 { p1->bf=0; p->bf=-1; } else //新结点插在*p2的右子树上的情况 { p1->bf=1; p->bf=0; } p=p2; p->bf=0; //仍将p指向新的根结点,并置其bf值为0 } taller=0; } } void RightProcess(BSTNode *&p,int &taller) //对以指针p所指结点为根的二叉树作右平衡旋转处理,本算法结束时,指针p指向新的根结点 { BSTNode *p1,*p2; if (p->bf==0) //原本左、右子树等高,现因右子树增高而使树增高 { p->bf=-1; taller=1; } else if (p->bf==1) //原本左子树比右子树高,现左、右子树等高 { p->bf=0; taller=0; } else //原本右子树比左子树高,需作右子树的平衡处理 { p1=p->rchild; //p指向*p的右子树根结点 if (p1->bf==-1) //新结点插入在*b的右孩子的右子树上,要作RR调整 { p->rchild=p1->lchild; p1->lchild=p; p->bf=p1->bf=0; p=p1; } else if (p1->bf==1) //新结点插入在*p的右孩子的左子树上,要作RL调整 { p2=p1->lchild; p1->lchild=p2->rchild; p2->rchild=p1; p->rchild=p2->lchild; p2->lchild=p; if (p2->bf==0) //新结点插在*p2处作为叶子结点的情况 p->bf=p1->bf=0; else if (p2->bf==-1) //新结点插在*p2的右子树上的情况 { p1->bf=0; p->bf=1; } else //新结点插在*p2的左子树上的情况 { p1->bf=-1; p->bf=0; } p=p2; p->bf=0; //仍将p指向新的根结点,并置其bf值为0 } taller=0; } } int InsertAVL(BSTNode *&b,KeyType e,int &taller) /*若在平衡的二叉排序树b中不存在和e有相同关键字的结点,则插入一个 数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树 失去平衡,则作平衡旋转处理,布尔变量taller反映b长高与否*/ { if(b==NULL) //原为空树,插入新结点,树“长高”,置taller为1 { b=(BSTNode *)malloc(sizeof(BSTNode)); b->key=e; b->lchild=b->rchild=NULL; b->bf=0; taller=1; } else { if (e==b->key) //树中已存在和e有相同关键字的结点则不再插入 { taller=0; return 0; } if (e<b->key) //应继续在*b的左子树中进行搜索 { if ((InsertAVL(b->lchild,e,taller))==0) //未插入 return 0; if (taller==1) //已插入到*b的左子树中且左子树“长高” LeftProcess(b,taller); } else //应继续在*b的右子树中进行搜索 { if ((InsertAVL(b->rchild,e,taller))==0) //未插入 return 0; if (taller==1) //已插入到b的右子树且右子树“长高” RightProcess(b,taller); } } return 1; } void DispBSTree(BSTNode *b) //以括号表示法输出AVL { if (b!=NULL) { printf("%d",b->key); if (b->lchild!=NULL || b->rchild!=NULL) { printf("("); DispBSTree(b->lchild); if (b->rchild!=NULL) printf(","); DispBSTree(b->rchild); printf(")"); } } } void LeftProcess1(BSTNode *&p,int &taller) //在删除结点时进行左处理 { BSTNode *p1,*p2; if (p->bf==1) { p->bf=0; taller=1; } else if (p->bf==0) { p->bf=-1; taller=0; } else //p->bf=-1 { p1=p->rchild; if (p1->bf==0) //需作RR调整 { p->rchild=p1->lchild; p1->lchild=p; p1->bf=1; p->bf=-1; p=p1; taller=0; } else if (p1->bf==-1) //需作RR调整 { p->rchild=p1->lchild; p1->lchild=p; p->bf=p1->bf=0; p=p1; taller=1; } else //需作RL调整 { p2=p1->lchild; p1->lchild=p2->rchild; p2->rchild=p1; p->rchild=p2->lchild; p2->lchild=p; if (p2->bf==0) { p->bf=0; p1->bf=0; } else if (p2->bf==-1) { p->bf=1; p1->bf=0; } else { p->bf=0; p1->bf=-1; } p2->bf=0; p=p2; taller=1; } } } void RightProcess1(BSTNode *&p,int &taller) //在删除结点时进行右处理 { BSTNode *p1,*p2; if (p->bf==-1) { p->bf=0; taller=-1; } else if (p->bf==0) { p->bf=1; taller=0; } else //p->bf=1 { p1=p->lchild; if (p1->bf==0) //需作LL调整 { p->lchild=p1->rchild; p1->rchild=p; p1->bf=-1; p->bf=1; p=p1; taller=0; } else if (p1->bf==1) //需作LL调整 { p->lchild=p1->rchild; p1->rchild=p; p->bf=p1->bf=0; p=p1; taller=1; } else //需作LR调整 { p2=p1->rchild; p1->rchild=p2->lchild; p2->lchild=p1; p->lchild=p2->rchild; p2->rchild=p; if (p2->bf==0) { p->bf=0; p1->bf=0; } else if (p2->bf==1) { p->bf=-1; p1->bf=0; } else { p->bf=0; p1->bf=1; } p2->bf=0; p=p2; taller=1; } } } void Delete2(BSTNode *q,BSTNode *&r,int &taller) //由DeleteAVL()调用,用于处理被删结点左右子树均不空的情况 { if (r->rchild==NULL) { q->key=r->key; q=r; r=r->lchild; free(q); taller=1; } else { Delete2(q,r->rchild,taller); if (taller==1) RightProcess1(r,taller); } } int DeleteAVL(BSTNode *&p,KeyType x,int &taller) //在AVL树p中删除关键字为x的结点 { int k; BSTNode *q; if (p==NULL) return 0; else if (x<p->key) { k=DeleteAVL(p->lchild,x,taller); if (taller==1) LeftProcess1(p,taller); return k; } else if (x>p->key) { k=DeleteAVL(p->rchild,x,taller); if (taller==1) RightProcess1(p,taller); return k; } else //找到了关键字为x的结点,由p指向它 { q=p; if (p->rchild==NULL) //被删结点右子树为空 { p=p->lchild; free(q); taller=1; } else if (p->lchild==NULL) //被删结点左子树为空 { p=p->rchild; free(q); taller=1; } else //被删结点左右子树均不空 { Delete2(q,q->lchild,taller); if (taller==1) LeftProcess1(q,taller); p=q; } return 1; } } int main() { BSTNode *b=NULL; int i,j,k; KeyType a[]= {16,3,7,11,9,26,18,14,15},n=9; //例10.5 printf(" 创建一棵AVL树:\n"); for(i=0; i<n; i++) { printf(" 第%d步,插入%d元素:",i+1,a[i]); InsertAVL(b,a[i],j); DispBSTree(b); printf("\n"); } printf(" AVL:"); DispBSTree(b); printf("\n"); printf(" 删除结点:\n"); //例10.6 k=11; printf(" 删除结点%d:",k); DeleteAVL(b,k,j); printf(" AVL:"); DispBSTree(b); printf("\n"); k=9; printf(" 删除结点%d:",k); DeleteAVL(b,k,j); printf(" AVL:"); DispBSTree(b); printf("\n"); k=15; printf(" 删除结点%d:",k); DeleteAVL(b,k,j); printf(" AVL:"); DispBSTree(b); printf("\n\n"); return 0; }
输出结果:
知识点总结:
不同的查找方法能够在不同的状况下节省时间,但是折半要求数具有渐变性,平衡二叉树要求相对平衡
本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系我们删除。