Inner joins:
hive> SELECT * FROM sales;
Joe 2
Hank 4
Ali 0
Eve 3
Hank 2
hive> SELECT * FROM things;
2 Tie
4 Coat
3 Hat
1 Scarf
两个表Inner joins:
hive> SELECT sales.*, things.*
> FROM sales JOIN things ON (sales.id =things.id);
Joe 2 2 Tie
Hank 4 4 Coat
Eve 3 3 Hat
Hank 2 2 Tie
只显示匹配id的记录
另一种表达方式:
SELECT sales.*, things.*
FROM sales, things
WHERE sales.id = things.id;
查看SQL查询分配多少个MapReduce job,使用关键字EXPLAIN
EXPLAIN
SELECT sales.*, things.*
FROM sales JOIN things ON (sales.id =things.id);
一个join 分配一个MapReduce job
Outer joins:
SELECT sales.*, things.*
> FROM sales LEFT OUTER JOIN things ON(sales.id = things.id);
Joe 2 2 Tie
Hank 4 4 Coat
Ali 0 NULL NULL
Eve 3 3 Hat
Hank 2 2 Tie
LEFT OUTER JOIN显示左表的列,右表的列只显示匹配的,不匹配的用null显示。
hive> SELECT sales.*, things.*
> FROM sales RIGHT OUTER JOIN things ON(sales.id = things.id);
Joe 2 2 Tie
Hank 2 2 Tie
Hank 4 4 Coat
Eve 3 3 Hat
NULL NULL 1 Scarf
RIGHT OUTER JOIN显示右表的列,左表的列只显示匹配的,不匹配的用null显示。
hive> SELECT sales.*, things.*
> FROM sales FULL OUTER JOIN things ON(sales.id = things.id);
Ali 0 NULL NULL
NULL NULL 1 Scarf
Hank 2 2 Tie
Joe 2 2 Tie
Eve 3 3 Hat
Hank 4 4 Coat
两个表的列都显示,不匹配的以null填充
Semi joins:
SELECT *
FROM things
WHERE things.id IN (SELECT id from sales);
也可以替换用下列表达式:
hive> SELECT *
> FROM things LEFT SEMI JOIN sales ON(sales.id = things.id);
2 Tie
4 Coat
3 Hat
LEFT SEMI JOIN有限制右表sales 只能显示在on里,不能再select 表达式里引用sales表。
Map joins
看下面join:
SELECT sales.*, things.*
FROM sales JOIN things ON (sales.id =things.id);
如果一个表足够小可以存在内存里,hive可以加载该表到内存里执每个map 里的join,这就是map join. Map joins 没有reducer,不适合RIGHT、FULL OUTER JOIN
Map joins 可以利用分桶表的好处,使用需要启动优化属性:
SET hive.optimize.bucketmapjoin=true;
子查询:
SELECT station, year, AVG(max_temperature)
FROM (
SELECT station, year, MAX(temperature) ASmax_temperature
FROM records2
WHERE temperature != 9999 AND quality IN(0, 1, 4, 5, 9)
GROUP BY station, year
) mt
GROUP BY station, year;
上面的语句就是子查询,在from后面又一个查询。
视图:
视图是一个虚拟表通过一个select语句实现。
视图定义:
CREATE VIEW valid_records
AS
SELECT *
FROM records2
WHERE temperature <> 9999 AND qualityIN (0, 1, 4, 5, 9);
DESCRIBE EXTENDED view_name 查看视图的详细信息
在第一个视图基础上创建一个视图:求每个位置每年的最大气温。
CREATE VIEW max_temperatures (station,year, max_temperature)
AS
SELECT station, year, MAX(temperature)
FROM valid_records
GROUP BY station, year;
执行查询求平均最大气温:
SELECT station, year, AVG(max_temperature)
FROM max_temperatures
GROUP BY station, year;
视图只能读,不可以通过视图加载或插入数据到基本表
用户自定义函数:
UDF:操作单个数据行,产生单个数据行。
UDAF:操作多个数据行,产生一个数据行。
UDTF:操作一个数据行,产生多个数据行一个表作为输出。
下面是一个列子使用UDTF:
CREATE TABLE arrays (x ARRAY<STRING>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\001'
COLLECTION ITEMS TERMINATED BY '\002';
数据:
a^Bb
c^Bd^Be
通过数据加载命令可以得到:
hive> SELECT * FROM arrays;
["a","b"]
["c","d","e"]
然后将上述的每行数组数据转换成单行String类型数据,如下:
hive> SELECT explode(x) AS y FROM arrays;
a
b
c
d
e
UDTF有一些限制,它们不能使用额外列表达式。
UDF:
一个UDF必须满足以下两个属性:
•一个UDF必须是org.apache.hadoop.hive.ql.exec.UDF的子类。
•一个UDF必须实现至少一个evaluate()方法。
Evaluate不受接口定义,它可能接受任意个参数和任意类型,返回任意类型的值。
使用步骤:
1、打包编写好的UDF 2、注册功能到元数据中并给起个名字
UDF程序:除去字符串两端的空格或者两端指定的字符
package com.hadoop2app.hive;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;
/**
* 除去字符串两端的空格或者两端指定的字符
*
* */
public class Strip extends UDF {
private Text result = new Text();
public Text evaluate(Text str) {
if (str == null) {
return null;
}
result.set(StringUtils.strip(str.toString()));
return result;
}
public Text evaluate(Text str, String stripChars) {
if (str == null) {
return null;
}
result.set(StringUtils.strip(str.toString(), stripChars));
return result;
}
}
打包:mvn package 或者 eclipse 选项导出 jar 包并将 jar 上传至服务器指定目录:
注册 FUNCTION 在元数据中并起个名字,操作如下 :
添加jar:
hive> add jar /home/jar/Strip.jar;
CREATE FUNCTION strip AS'com.hadoop2app.hive.Strip';
效果图:
一个参数
两个参数
CREATE FUNCTION strip AS'com.hadoopbook.hive.Strip'
USING JAR '/path/to/hive-examples.jar';
在集群中,我们需要将打包的jar上传至HDFS中,USING JAR 后是HDFS的URI。
移除function:
DROP FUNCTION strip;
创建一个在Hive会话期间的FUNCTION,它不持久化到metastore,使用TEMPORARY关键字
ADD JAR /path/to/hive-examples.jar;
CREATE TEMPORARY FUNCTION strip AS'com.hadoopbook.hive.Strip';
在定义UDFs的目录里创建一个.hiverc,在hive session开始的时候将自动运行。
UDAF:
1.必须是org.apache.hadoop.hive.ql.exec.UDAF的子类
2.必须包含一个或者多个实现了org.apache.hadoop.hive.ql.exec.UDAFEvaluator的静态类
3.一个evaluator,必须实现5个方法
init():初始化
iterate():
terminatePartial():返回中间聚合的结果
merge():
terminate():聚合的结果显示,调用terminate()。
UDAF 程序: 求温度大值
package com.hadoop2app.hive;
import org.apache.hadoop.hive.ql.exec.UDAF;
import org.apache.hadoop.hive.ql.exec.UDAFEvaluator;
import org.apache.hadoop.io.IntWritable;
/**
* UDAF:求最大值
*
* /
@SuppressWarnings("deprecation")
public class Maximum extends UDAF {
public static class MaximumIntUDAFEvaluator implements UDAFEvaluator{
private IntWritable result;
@Override
public void init() {
result = null;
}
public boolean iterate(IntWritable value){
if(value==null){
return true;
}
if(result==null){
result = new IntWritable(value.get());
}else{
result.set(Math.max(result.get(),value.get()));
}
return true;
}
public IntWritable terminatePartial(){
return result;
}
public boolean merge(IntWritable other){
return iterate(other);
}
public IntWritable terminate(){
return result;
}
}
}
创建FUNCTION:
hive> add jar /home/jar/Maximum.jar;
Added [/home/jar/Maximum.jar] to class path
Added resources: [/home/jar/Maximum.jar]
hive> CREATE TEMPORARY FUNCTION maximum AS 'com.hadoop2app.hive.Maximum';
hive> SELECT maximum(temperature) FROM records;
UDAF处理流程图
本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系我们删除。