/* HDU 6051 - If the starlight never fade [ 原根,欧拉函数 ] | 2017 Multi-University Training Contest 2 题意: 给定 m,p, p 是素数 设 f(i) 是 满足 (x+y)^i ≡ x^i mod p 的 (x,y) 对数 且 1 ≤ x ≤ p-1 , 1 ≤ y ≤ m 求 ∑[1≤i≤p-1] i*f(i) 限制: m ≤ p-1, 2 ≤ p ≤ 1e9 分析: 设 g 为 p 的原根,则x,y可表示为 x = g^a, y = g^b (x+y)^i ≡ x^i (mod p) (g^a + g^b)^i ≡ g^ai (mod p) (1 + g^(b-a))^i ≡ 1 (mod p) 设 g^k = 1 + g^(b-a),则 g^ki ≡ 1 (mod p) 则 k 满足 ki % (p-1) == 0 ,即 k 是 (p-1)/gcd(i, p-1) 的倍数 由于 0 < k < p-1 , 则k的取值有 (p-1) / ((p-1)/gcd(i, p-1)) - 1 = gcd(i, p-1)-1 个 回带 1 + y/x = g^k x = y * (g^k-1)^(-1) x = y * (g^k-1)^(φ(p)-1) 则 当y固定时, x, k 一一对应,x的取值也有 gcd(i, p-1)-1 个 ans = ∑[1≤i≤p-1] i*f(i) = ∑[1≤i≤p-1] i * m * (gcd(i, p-1)-1) = m * ( ∑[1≤i≤p-1] i * gcd(i, p-1) - p*(p-1)/2) 求解 ∑[1≤i≤n] i * gcd(i, n) = ∑[1≤i≤n] i ∑[k|n] k * [gcd(i, n) == k] = ∑[k|n] ∑[1≤i≤n] i * k * [gcd(i, n) == k] = ∑[k|n] k^2 ∑[1≤i≤n/k] i * [gcd(i, n/k) == 1] 求解 ∑[1≤i≤n] i * [gcd(i, n) == 1] = (∑[1≤i≤n] i * [gcd(i, n) == 1] + ∑[1≤i≤n] (n-i) * [gcd(i, n-i) == 1]) / 2 = ∑[1≤i≤n] (i+n-i)/2 * [gcd(i, n) == 1] = (n * φ(n) + [n==1]) / 2 */ #include <bits/stdc++.h> using namespace std; #define LL long long const LL MOD = 1e9+7; LL phi(LL n) { LL ans = n; for (LL i = 2; i * i <= n; i++) { if (n % i == 0) { ans -= ans / i; while (n % i == 0) n /= i; } } if (n > 1) ans -= ans/n; return ans; } LL Cal(LL x, LL n) { LL res = 1; res *= ( (n/x)*phi(n/x) + bool(n/x == 1) ) / 2; res %= MOD; res *= x*x % MOD; res %= MOD; return res; } LL p, m; int main() { int t; scanf("%d", &t); for (int tt = 1; tt <= t; tt++) { scanf("%lld%lld", &m, &p); LL ans = 0; for (LL i = 1; i*i <= p-1; i++) { if (i*i == p-1) { ans += Cal(i, p-1); ans %= MOD; } else if ((p-1)%i == 0) { ans += Cal(i, p-1) + Cal((p-1)/i, p-1); ans %= MOD; } } ans += MOD - p*(p-1)/2 % MOD; ans = ans % MOD * m % MOD; printf("Case #%d: %lld\n", tt, ans); } }
本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系我们删除。