GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花种类识别正确率、各个模型运行时间对比—Jason niu


GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花种类识别正确率、各个模型运行时间对比—Jason niu

load  iris_data.mat 
 
P_train = [];
T_train = [];
P_test = [];
T_test = [];
for  i  = 1:3 
     temp_input = features(( i -1)*50+1: i *50,:);
     temp_output = classes(( i -1)*50+1: i *50,:);
     n =  randperm (50);
 
     P_train = [P_train temp_input(n(1:40),:)'];
     T_train = [T_train temp_output(n(1:40),:)'];
 
     P_test = [P_test temp_input(n(41:50),:)'];
     T_test = [T_test temp_output(n(41:50),:)'];
end
 
result_grnn = [];
result_pnn = [];
time_grnn = [];
time_pnn = [];
 
for  i  = 1:4
     for  j  i :4
         p_train = P_train( i : j ,:);
         p_test = P_test( i : j ,:);
 
         t =  cputime
 
         net_grnn = newgrnn(p_train,T_train);
 
         t_sim_grnn = sim(net_grnn,p_test);
         T_sim_grnn =  round (t_sim_grnn); 
         t =  cputime  - t;
         time_grnn = [time_grnn t];
         result_grnn = [result_grnn T_sim_grnn'];
  
         t =  cputime ;
         Tc_train = ind2vec(T_train);
 
         net_pnn = newpnn(p_train,Tc_train);
  
         Tc_test = ind2vec(T_test);
         t_sim_pnn = sim(net_pnn,p_test);
         T_sim_pnn = vec2ind(t_sim_pnn);
         t =  cputime  - t;
         time_pnn = [time_pnn t];
         result_pnn = [result_pnn T_sim_pnn'];
     end
end
 
accuracy_grnn = [];
accuracy_pnn = [];
time = [];
for  i  = 1:10
     accuracy_1 =  length ( find (result_grnn(:, i ) == T_test'))/ length (T_test);
     accuracy_2 =  length ( find (result_pnn(:, i ) == T_test'))/ length (T_test);
     accuracy_grnn = [accuracy_grnn accuracy_1];
     accuracy_pnn = [accuracy_pnn accuracy_2];
end
 
result = [T_test' result_grnn result_pnn]
accuracy = [accuracy_grnn;accuracy_pnn]
time = [time_grnn;time_pnn]


智能推荐

注意!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系我们删除。



 
© 2014-2019 ITdaan.com 粤ICP备14056181号  

赞助商广告