题目链接点击打开链接
You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.
InputInput starts with an integer T (≤ 1000), denoting the number of test cases.
Each case starts with a line containing two integers: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107).
OutputFor each case, print the case number and the three leading digits (most significant) and three trailing digits (least significant). You can assume that the input is given such that nk contains at least six digits.
Sample Input5
123456 1
123456 2
2 31
2 32
29 8751919
Sample OutputCase 1: 123 456
Case 2: 152 936
Case 3: 214 648
Case 4: 429 296
Case 5: 665 669
题意,求出n的k次幂前三位和后三位。
后三位由快速幂,前三位可由数学公式推导。
n的k次幂我们用科学记数法表示则a*10的m次方,两边同时取对数
得k*log10(n)=log10(a)+m。这里可以发现m为k*log10(n)得整数部分(因为a大于0小于10,取对数后为0.xxx形式),
所以可求得log10(a),这里求前三位故加2(相当于乘100),算10得次方既可。
code:
#include<bits/stdc++.h> using namespace std; #define LL long long #define mod 1000 LL quick_pow(LL x,int k) { LL ans=1; while(k>0) { if(k&1) { ans*=x; ans%=mod; } x*=x; x%=mod; k>>=1; } return ans; } int main() { int T; scanf("%d",&T); for(int c= 1; c<=T; c++) { int k,i; LL n; scanf("%lld %d",&n,&k); double temp=k*log10(n); temp=fmod(temp,1); int res=(int)(pow(10,temp)*100); printf("Case %d: %03d %03lld\n",c,res,quick_pow(n,k)); } }
本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系我们删除。