RBF神经网络重点函数介绍
RBF代码使用实例
%% I. 清空环境变量
clear all
clc%% II. 训练集/测试集产生
%%
% 1. 导入数据
load spectra_data.mat%%
% 2. 随机产生训练集和测试集
temp = randperm(size(NIR,1));
% 训练集——50个样本
P_train = NIR(temp(1:50),:)’;
T_train = octane(temp(1:50),:)’;
% 测试集——10个样本
P_test = NIR(temp(51:end),:)’;
T_test = octane(temp(51:end),:)’;
N = size(P_test,2);%% III. RBF神经网络创建及仿真测试
%%
% 1. 创建网络
net = newrbe(P_train,T_train,30);%%
% 2. 仿真测试
T_sim = sim(net,P_test);%% IV. 性能评价
%%
% 1. 相对误差error
error = abs(T_sim - T_test)./T_test;%%
% 2. 决定系数R^2
R2 = (N * sum(T_sim .* T_test) - sum(T_sim) * sum(T_test))^2 / ((N * sum((T_sim).^2) - (sum(T_sim))^2) * (N * sum((T_test).^2) - (sum(T_test))^2));%%
% 3. 结果对比
result = [T_test’ T_sim’ error’]%% V. 绘图
figure
plot(1:N,T_test,’b:*’,1:N,T_sim,’r-o’)
legend(‘真实值’,’预测值’)
xlabel(‘预测样本’)
ylabel(‘辛烷值’)
string = {‘测试集辛烷值含量预测结果对比’;[‘R^2=’ num2str(R2)]};
title(string)
GRNN神经网络概述
广义回归神经网络
输入层和隐含层与 RBF 神经网络一致,这里的 直接由输出矩阵代替,并在隐含层与输出层之间和激活函数进行点乘
PNN神经网络概述
概率神经网络
输入层和隐含层与RBF神经网络一致,不同点是最后的输出环节使用了一个竞争函数
GRNN、PNN神经网络重点函数介绍
代码使用实例
%% I. 清空环境变量
clear all
clc%% II. 训练集/测试集产生
%%
% 1. 导入数据
load iris_data.mat%%
% 2 随机产生训练集和测试集
P_train = [];
T_train = [];
P_test = [];
T_test = [];
for i = 1:3
temp_input = features((i-1)*50+1:i*50,:);
temp_output = classes((i-1)*50+1:i*50,:);
n = randperm(50);
% 训练集——120个样本
P_train = [P_train temp_input(n(1:40),:)’];
T_train = [T_train temp_output(n(1:40),:)’];
% 测试集——30个样本
P_test = [P_test temp_input(n(41:50),:)’];
T_test = [T_test temp_output(n(41:50),:)’];
end%% III. 模型建立
result_grnn = [];
result_pnn = [];
time_grnn = [];
time_pnn = [];
for i = 1:4
for j = i:4
p_train = P_train(i:j,:);
p_test = P_test(i:j,:);
%%
% 1. GRNN创建及仿真测试
t = cputime;
% 创建网络
net_grnn = newgrnn(p_train,T_train);
% 仿真测试
t_sim_grnn = sim(net_grnn,p_test);
T_sim_grnn = round(t_sim_grnn);
t = cputime - t;
time_grnn = [time_grnn t];
result_grnn = [result_grnn T_sim_grnn’];
%%
% 2. PNN创建及仿真测试
t = cputime;
Tc_train = ind2vec(T_train);
% 创建网络
net_pnn = newpnn(p_train,Tc_train);
% 仿真测试
Tc_test = ind2vec(T_test);
t_sim_pnn = sim(net_pnn,p_test);
T_sim_pnn = vec2ind(t_sim_pnn);
t = cputime - t;
time_pnn = [time_pnn t];
result_pnn = [result_pnn T_sim_pnn’];
end
end%% IV. 性能评价
%%
% 1. 正确率accuracy
accuracy_grnn = [];
accuracy_pnn = [];
time = [];
for i = 1:10
accuracy_1 = length(find(result_grnn(:,i) == T_test’))/length(T_test);
accuracy_2 = length(find(result_pnn(:,i) == T_test’))/length(T_test);
accuracy_grnn = [accuracy_grnn accuracy_1];
accuracy_pnn = [accuracy_pnn accuracy_2];
end%%
% 2. 结果对比
result = [T_test’ result_grnn result_pnn]
accuracy = [accuracy_grnn;accuracy_pnn]
time = [time_grnn;time_pnn]%% V. 绘图
figure(1)
plot(1:30,T_test,’bo’,1:30,result_grnn(:,4),’r-*’,1:30,result_pnn(:,4),’k:^’)
grid on
xlabel(‘测试集样本编号’)
ylabel(‘测试集样本类别’)
string = {‘测试集预测结果对比(GRNN vs PNN)’;[‘正确率:’ num2str(accuracy_grnn(4)*100) ‘%(GRNN) vs ’ num2str(accuracy_pnn(4)*100) ‘%(PNN)’]};
title(string)
legend(‘真实值’,’GRNN预测值’,’PNN预测值’)
本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系我们删除。