有N个小时,有三种食物(用a ,b ,c代替好了),每个小时要吃一种食物,要求任意连续三个小时不能出现aaa,bbb,ccc,abc,cba,bab,bcb(假设b为巧克力)
的方案数
先用矩阵打表
先对两个数统计有1.aa 2.bb 3.cc 4.ab 5.ba 6.ac 7.ca 8.bc 9.cb
在添加一个数,则会有
若ba后面只能添加a或c 即形成新的两个字母组合1.aa 6.ac 即5可以产生1和6(以下代码不是照上面数字敲的)
以此类推即可产生新的a数组
ll a[2][15]; int main(){ int op=0; for(int i=1;i<=9;i++) a[op][i]=1; for(int i=3;i<=30;i++){ op^=1; for(int j=1;j<=9;j++) a[op][j]=0; a[op][1]=(a[op^1][6]+a[op^1][8])%MOD; a[op][2]=(a[op^1][4]+a[op^1][6]+a[op^1][8])%MOD; a[op][3]=(a[op^1][5]+a[op^1][7])%MOD; a[op][4]=(a[op^1][1]+a[op^1][7])%MOD; a[op][5]=(a[op^1][2]+a[op^1][9])%MOD; a[op][6]=(a[op^1][2]+a[op^1][3]+a[op^1][9])%MOD; a[op][7]=(a[op^1][1]+a[op^1][5])%MOD; a[op][8]=(a[op^1][4]+a[op^1][6])%MOD; a[op][9]=(a[op^1][2]+a[op^1][3])%MOD; ll ans=0; for(int j=1;j<=9;j++){ printf("%lld ",a[op][j]); ans=(ans+a[op][j])%MOD; } printf("%lld\n",ans); } return 0; }
之后直接套用模板即可
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <string> #include <map> #include <set> #include <cassert> #include<bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef vector<int> VI; typedef long long ll; typedef pair<int,int> PII; const ll mod=1000000007; ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} // head int _,n; namespace linear_seq { const int N=10010; ll res[N],base[N],_c[N],_md[N]; vector<int> Md; void mul(ll *a,ll *b,int k) { rep(i,0,k+k) _c[i]=0; rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; for (int i=k+k-1;i>=k;i--) if (_c[i]) rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; rep(i,0,k) a[i]=_c[i]; } int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+... // printf("%d\n",SZ(b)); ll ans=0,pnt=0; int k=SZ(a); assert(SZ(a)==SZ(b)); rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; Md.clear(); rep(i,0,k) if (_md[i]!=0) Md.push_back(i); rep(i,0,k) res[i]=base[i]=0; res[0]=1; while ((1ll<<pnt)<=n) pnt++; for (int p=pnt;p>=0;p--) { mul(res,res,k); if ((n>>p)&1) { for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; } } rep(i,0,k) ans=(ans+res[i]*b[i])%mod; if (ans<0) ans+=mod; return ans; } VI BM(VI s) { VI C(1,1),B(1,1); int L=0,m=1,b=1; rep(n,0,SZ(s)) { ll d=0; rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; if (d==0) ++m; else if (2*L<=n) { VI T=C; ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; L=n+1-L; B=T; b=d; m=1; } else { ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; ++m; } } return C; } int gao(VI a,ll n) { VI c=BM(a); c.erase(c.begin()); rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod; return solve(n,c,VI(a.begin(),a.begin()+SZ(c))); } }; int main() { int T; ll n; cin>>T; vector<int>v; v.push_back(3); v.push_back(9); v.push_back(20); v.push_back(46); v.push_back(106); v.push_back(244); v.push_back(560); v.push_back(1286); v.push_back(2956); v.push_back(6794); v.push_back(15610); v.push_back(35866); v.push_back(82416); while (T--) { scanf("%lld",&n); printf("%d\n",linear_seq::gao(v,n-1)); } }
本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系我们删除。